// SPDX-License-Identifier: MPL-2.0 // Copyright © 2021 Skyline Team and Contributors (https://github.com/skyline-emu/) #include #include #include #include #include #include #include "shader_manager.h" namespace Shader::Log { void Debug(const std::string &message) { skyline::Logger::Write(skyline::Logger::LogLevel::Debug, message); } void Warn(const std::string &message) { skyline::Logger::Write(skyline::Logger::LogLevel::Warn, message); } void Error(const std::string &message) { skyline::Logger::Write(skyline::Logger::LogLevel::Error, message); } } namespace skyline::gpu { ShaderManager::ShaderManager(const DeviceState &state, GPU &gpu) : gpu(gpu) { auto &traits{gpu.traits}; hostTranslateInfo = Shader::HostTranslateInfo{ .support_float16 = traits.supportsFloat16, .support_int64 = traits.supportsInt64, .needs_demote_reorder = false, }; constexpr u32 TegraX1WarpSize{32}; //!< The amount of threads in a warp on the Tegra X1 profile = Shader::Profile{ .supported_spirv = traits.supportsSpirv14 ? 0x00010400U : 0x00010000U, .unified_descriptor_binding = true, .support_descriptor_aliasing = !traits.quirks.brokenDescriptorAliasing, .support_int8 = traits.supportsInt8, .support_int16 = traits.supportsInt16, .support_int64 = traits.supportsInt64, .support_vertex_instance_id = false, .support_float_controls = traits.supportsFloatControls, .support_separate_denorm_behavior = traits.floatControls.denormBehaviorIndependence == vk::ShaderFloatControlsIndependence::eAll, .support_separate_rounding_mode = traits.floatControls.roundingModeIndependence == vk::ShaderFloatControlsIndependence::eAll, .support_fp16_denorm_preserve = static_cast(traits.floatControls.shaderDenormPreserveFloat16), .support_fp32_denorm_preserve = static_cast(traits.floatControls.shaderDenormPreserveFloat32), .support_fp16_denorm_flush = static_cast(traits.floatControls.shaderDenormFlushToZeroFloat16), .support_fp32_denorm_flush = static_cast(traits.floatControls.shaderDenormFlushToZeroFloat32), .support_fp16_signed_zero_nan_preserve = static_cast(traits.floatControls.shaderSignedZeroInfNanPreserveFloat16), .support_fp32_signed_zero_nan_preserve = static_cast(traits.floatControls.shaderSignedZeroInfNanPreserveFloat32), .support_fp64_signed_zero_nan_preserve = static_cast(traits.floatControls.shaderSignedZeroInfNanPreserveFloat64), .support_explicit_workgroup_layout = false, .support_vote = traits.supportsSubgroupVote, .support_viewport_index_layer_non_geometry = traits.supportsShaderViewportIndexLayer, .support_viewport_mask = false, .support_typeless_image_loads = traits.supportsImageReadWithoutFormat, .support_demote_to_helper_invocation = traits.supportsShaderDemoteToHelper, .support_int64_atomics = traits.supportsAtomicInt64, .support_derivative_control = true, .support_geometry_shader_passthrough = false, .warp_size_potentially_larger_than_guest = TegraX1WarpSize < traits.subgroupSize, .lower_left_origin_mode = false, .need_declared_frag_colors = false, }; Shader::Settings::values = { #ifdef NDEBUG .renderer_debug = false, .disable_shader_loop_safety_checks = false, #else .renderer_debug = true, .disable_shader_loop_safety_checks = true, #endif .resolution_info = { .active = false, }, }; } /** * @brief A shader environment for all graphics pipeline stages */ class GraphicsEnvironment : public Shader::Environment { private: span binary; u32 baseOffset; u32 textureBufferIndex; public: GraphicsEnvironment(Shader::Stage pStage, span pBinary, u32 baseOffset, u32 textureBufferIndex) : binary(pBinary), baseOffset(baseOffset), textureBufferIndex(textureBufferIndex) { stage = pStage; sph = *reinterpret_cast(binary.data()); start_address = baseOffset; } [[nodiscard]] u64 ReadInstruction(u32 address) final { address -= baseOffset; if (binary.size() < (address + sizeof(u64))) throw exception("Out of bounds instruction read: 0x{:X}", address); return *reinterpret_cast(binary.data() + address); } [[nodiscard]] u32 ReadCbufValue(u32 cbuf_index, u32 cbuf_offset) final { throw exception("Not implemented"); } [[nodiscard]] Shader::TextureType ReadTextureType(u32 raw_handle) final { throw exception("Not implemented"); } [[nodiscard]] u32 TextureBoundBuffer() const final { return textureBufferIndex; } [[nodiscard]] u32 LocalMemorySize() const final { return static_cast(sph.LocalMemorySize()) + sph.common3.shader_local_memory_crs_size; } [[nodiscard]] u32 SharedMemorySize() const final { return 0; // Only relevant for compute shaders } [[nodiscard]] std::array WorkgroupSize() const final { return {0, 0, 0}; // Only relevant for compute shaders } }; /** * @brief A shader environment for VertexB during combination as it only requires the shader header and no higher level context */ class VertexBEnvironment : public Shader::Environment { public: explicit VertexBEnvironment(span binary) { sph = *reinterpret_cast(binary.data()); stage = Shader::Stage::VertexB; } [[nodiscard]] u64 ReadInstruction(u32 address) final { throw exception("Not implemented"); } [[nodiscard]] u32 ReadCbufValue(u32 cbuf_index, u32 cbuf_offset) final { throw exception("Not implemented"); } [[nodiscard]] Shader::TextureType ReadTextureType(u32 raw_handle) final { throw exception("Not implemented"); } [[nodiscard]] u32 TextureBoundBuffer() const final { throw exception("Not implemented"); } [[nodiscard]] u32 LocalMemorySize() const final { return static_cast(sph.LocalMemorySize()) + sph.common3.shader_local_memory_crs_size; } [[nodiscard]] u32 SharedMemorySize() const final { return 0; // Only relevant for compute shaders } [[nodiscard]] std::array WorkgroupSize() const final { return {0, 0, 0}; // Only relevant for compute shaders } }; ShaderManager::DualVertexShaderProgram::DualVertexShaderProgram(Shader::IR::Program ir, std::shared_ptr vertexA, std::shared_ptr vertexB) : ShaderProgram{std::move(ir)}, vertexA(std::move(vertexA)), vertexB(std::move(vertexB)) {} std::shared_ptr ShaderManager::ParseGraphicsShader(Shader::Stage stage, span binary, u32 baseOffset, u32 bindlessTextureConstantBufferIndex) { auto &program{programCache[binary]}; if (program) return program; program = std::make_shared(); GraphicsEnvironment environment{stage, binary, baseOffset, bindlessTextureConstantBufferIndex}; Shader::Maxwell::Flow::CFG cfg(environment, program->flowBlockPool, Shader::Maxwell::Location{static_cast(baseOffset + sizeof(Shader::ProgramHeader))}); program->program = Shader::Maxwell::TranslateProgram(program->instructionPool, program->blockPool, environment, cfg, hostTranslateInfo); return program; } constexpr size_t ShaderManager::DualVertexProgramsHash::operator()(const std::pair, std::shared_ptr> &p) const { size_t hash{}; boost::hash_combine(hash, p.first); boost::hash_combine(hash, p.second); return hash; } std::shared_ptr ShaderManager::CombineVertexShaders(const std::shared_ptr &vertexA, const std::shared_ptr &vertexB, span vertexBBinary) { auto &program{dualProgramCache[DualVertexPrograms{vertexA, vertexB}]}; if (program) return program; VertexBEnvironment vertexBEnvironment{vertexBBinary}; program = std::make_shared(Shader::Maxwell::MergeDualVertexPrograms(vertexA->program, vertexB->program, vertexBEnvironment), vertexA, vertexB); return program; } bool ShaderManager::ShaderModuleState::operator==(const ShaderModuleState &other) const { if (program != other.program) return false; if (bindings.unified != other.bindings.unified || bindings.uniform_buffer != other.bindings.uniform_buffer || bindings.storage_buffer != other.bindings.storage_buffer || bindings.texture != other.bindings.texture || bindings.image != other.bindings.image || bindings.texture_scaling_index != other.bindings.texture_scaling_index || bindings.image_scaling_index != other.bindings.image_scaling_index) return false; static_assert(sizeof(Shader::Backend::Bindings) == 0x1C); if (!std::equal(runtimeInfo.generic_input_types.begin(), runtimeInfo.generic_input_types.end(), other.runtimeInfo.generic_input_types.begin())) return false; #define NEQ(member) runtimeInfo.member != other.runtimeInfo.member if (NEQ(previous_stage_stores.mask) || NEQ(convert_depth_mode) || NEQ(force_early_z) || NEQ(tess_primitive) || NEQ(tess_spacing) || NEQ(tess_clockwise) || NEQ(input_topology) || NEQ(fixed_state_point_size) || NEQ(alpha_test_func) || NEQ(alpha_test_reference) || NEQ(y_negate) || NEQ(glasm_use_storage_buffers)) return false; #undef NEQ if (!std::equal(runtimeInfo.xfb_varyings.begin(), runtimeInfo.xfb_varyings.end(), other.runtimeInfo.xfb_varyings.begin(), [](const Shader::TransformFeedbackVarying &a, const Shader::TransformFeedbackVarying &b) { return a.buffer == b.buffer && a.stride == b.stride && a.offset == b.offset && a.components == b.components; })) return false; static_assert(sizeof(Shader::RuntimeInfo) == 0x88); return true; } constexpr size_t ShaderManager::ShaderModuleStateHash::operator()(const ShaderManager::ShaderModuleState &state) const { size_t hash{}; boost::hash_combine(hash, state.program); hash = XXH64(&state.bindings, sizeof(Shader::Backend::Bindings), hash); #define RIH(member) boost::hash_combine(hash, state.runtimeInfo.member) hash = XXH64(state.runtimeInfo.generic_input_types.data(), state.runtimeInfo.generic_input_types.size() * sizeof(Shader::AttributeType), hash); hash = XXH64(&state.runtimeInfo.previous_stage_stores.mask, sizeof(state.runtimeInfo.previous_stage_stores.mask), hash); RIH(convert_depth_mode); RIH(force_early_z); RIH(tess_primitive); RIH(tess_spacing); RIH(tess_clockwise); RIH(input_topology); RIH(fixed_state_point_size.value_or(NAN)); RIH(alpha_test_func.value_or(Shader::CompareFunction::Never)); RIH(alpha_test_reference); RIH(glasm_use_storage_buffers); hash = XXH64(state.runtimeInfo.xfb_varyings.data(), state.runtimeInfo.xfb_varyings.size() * sizeof(Shader::TransformFeedbackVarying), hash); static_assert(sizeof(Shader::RuntimeInfo) == 0x88); #undef RIH return hash; } ShaderManager::ShaderModule::ShaderModule(const vk::raii::Device &device, const vk::ShaderModuleCreateInfo &createInfo, Shader::Backend::Bindings bindings) : vkModule(device, createInfo), bindings(bindings) {} vk::ShaderModule ShaderManager::CompileShader(Shader::RuntimeInfo &runtimeInfo, const std::shared_ptr &program, Shader::Backend::Bindings &bindings) { ShaderModuleState shaderModuleState{program, bindings, runtimeInfo}; auto it{shaderModuleCache.find(shaderModuleState)}; if (it != shaderModuleCache.end()) { const auto &entry{it->second}; bindings = entry.bindings; return *entry.vkModule; } // Note: EmitSPIRV will change bindings so we explicitly have pre/post emit bindings auto spirv{Shader::Backend::SPIRV::EmitSPIRV(profile, runtimeInfo, program->program, bindings)}; vk::ShaderModuleCreateInfo createInfo{ .pCode = spirv.data(), .codeSize = spirv.size() * sizeof(u32), }; auto shaderModule{shaderModuleCache.try_emplace(shaderModuleState, gpu.vkDevice, createInfo, bindings)}; return *(shaderModule.first->second.vkModule); } }