Files
strato/app/src/main/cpp/skyline/gpu/memory_manager.cpp
2021-03-06 18:58:04 +05:30

213 lines
8.3 KiB
C++

// SPDX-License-Identifier: MPL-2.0
// Copyright © 2020 Skyline Team and Contributors (https://github.com/skyline-emu/)
#include <kernel/types/KProcess.h>
#include "memory_manager.h"
namespace skyline::gpu::vmm {
MemoryManager::MemoryManager(const DeviceState &state) : state(state) {
constexpr u64 gpuAddressSpaceSize{1UL << 40}; //!< The size of the GPU address space
constexpr u64 gpuAddressSpaceBase{0x100000}; //!< The base of the GPU address space - must be non-zero
// Create the initial chunk that will be split to create new chunks
ChunkDescriptor baseChunk(gpuAddressSpaceBase, gpuAddressSpaceSize, nullptr, ChunkState::Unmapped);
chunks.push_back(baseChunk);
}
std::optional<ChunkDescriptor> MemoryManager::FindChunk(ChunkState desiredState, u64 size, u64 alignment) {
auto chunk{std::find_if(chunks.begin(), chunks.end(), [desiredState, size, alignment](const ChunkDescriptor &chunk) -> bool {
return (alignment ? util::IsAligned(chunk.virtAddr, alignment) : true) && chunk.size > size && chunk.state == desiredState;
})};
if (chunk != chunks.end())
return *chunk;
return std::nullopt;
}
u64 MemoryManager::InsertChunk(const ChunkDescriptor &newChunk) {
auto chunkEnd{chunks.end()};
for (auto chunk{chunks.begin()}; chunk != chunkEnd; chunk++) {
if (chunk->CanContain(newChunk)) {
auto oldChunk{*chunk};
u64 newSize{newChunk.virtAddr - chunk->virtAddr};
u64 extension{chunk->size - newSize - newChunk.size};
if (newSize == 0) {
*chunk = newChunk;
} else {
chunk->size = newSize;
chunk = chunks.insert(std::next(chunk), newChunk);
}
if (extension)
chunks.insert(std::next(chunk), ChunkDescriptor(newChunk.virtAddr + newChunk.size, extension, (oldChunk.state == ChunkState::Mapped) ? (oldChunk.cpuPtr + newSize + newChunk.size) : nullptr, oldChunk.state));
return newChunk.virtAddr;
} else if (chunk->virtAddr + chunk->size > newChunk.virtAddr) {
chunk->size = newChunk.virtAddr - chunk->virtAddr;
// Deletes all chunks that are within the chunk being inserted and split the final one
auto tailChunk{std::next(chunk)};
while (tailChunk != chunkEnd) {
if (tailChunk->virtAddr + tailChunk->size >= newChunk.virtAddr + newChunk.size)
break;
tailChunk = chunks.erase(tailChunk);
chunkEnd = chunks.end();
}
// The given chunk is too large to fit into existing chunks
if (tailChunk == chunkEnd)
break;
u64 chunkSliceOffset{newChunk.virtAddr + newChunk.size - tailChunk->virtAddr};
tailChunk->virtAddr += chunkSliceOffset;
tailChunk->size -= chunkSliceOffset;
if (tailChunk->state == ChunkState::Mapped)
tailChunk->cpuPtr += chunkSliceOffset;
// If the size of the head chunk is zero then we can directly replace it with our new one rather than inserting it
auto headChunk{std::prev(tailChunk)};
if (headChunk->size == 0)
*headChunk = newChunk;
else
chunks.insert(std::next(headChunk), newChunk);
return newChunk.virtAddr;
}
}
throw exception("Failed to insert chunk into GPU address space!");
}
u64 MemoryManager::ReserveSpace(u64 size, u64 alignment) {
size = util::AlignUp(size, constant::GpuPageSize);
std::unique_lock lock(vmmMutex);
auto newChunk{FindChunk(ChunkState::Unmapped, size, alignment)};
if (!newChunk)
return 0;
auto chunk{*newChunk};
chunk.size = size;
chunk.state = ChunkState::Reserved;
return InsertChunk(chunk);
}
u64 MemoryManager::ReserveFixed(u64 virtAddr, u64 size) {
if (!util::IsAligned(virtAddr, constant::GpuPageSize))
return 0;
size = util::AlignUp(size, constant::GpuPageSize);
std::unique_lock lock(vmmMutex);
return InsertChunk(ChunkDescriptor(virtAddr, size, nullptr, ChunkState::Reserved));
}
u64 MemoryManager::MapAllocate(u8 *cpuPtr, u64 size) {
size = util::AlignUp(size, constant::GpuPageSize);
std::unique_lock lock(vmmMutex);
auto mappedChunk{FindChunk(ChunkState::Unmapped, size)};
if (!mappedChunk)
return 0;
auto chunk{*mappedChunk};
chunk.cpuPtr = cpuPtr;
chunk.size = size;
chunk.state = ChunkState::Mapped;
return InsertChunk(chunk);
}
u64 MemoryManager::MapFixed(u64 virtAddr, u8 *cpuPtr, u64 size) {
if (!util::IsAligned(virtAddr, constant::GpuPageSize))
return 0;
size = util::AlignUp(size, constant::GpuPageSize);
std::unique_lock lock(vmmMutex);
return InsertChunk(ChunkDescriptor(virtAddr, size, cpuPtr, ChunkState::Mapped));
}
bool MemoryManager::Unmap(u64 virtAddr, u64 size) {
if (!util::IsAligned(virtAddr, constant::GpuPageSize))
return false;
try {
std::unique_lock lock(vmmMutex);
InsertChunk(ChunkDescriptor(virtAddr, size, nullptr, ChunkState::Unmapped));
} catch (const std::exception &e) {
return false;
}
return true;
}
void MemoryManager::Read(u8 *destination, u64 virtAddr, u64 size) {
std::shared_lock lock(vmmMutex);
auto chunk{std::upper_bound(chunks.begin(), chunks.end(), virtAddr, [](const u64 address, const ChunkDescriptor &chunk) -> bool {
return address < chunk.virtAddr;
})};
if (chunk == chunks.end() || chunk->state != ChunkState::Mapped)
throw exception("Failed to read region in GPU address space: Address: 0x{:X}, Size: 0x{:X}", virtAddr, size);
chunk--;
u64 initialSize{size};
u64 chunkOffset{virtAddr - chunk->virtAddr};
u8 *source{chunk->cpuPtr + chunkOffset};
u64 sourceSize{std::min(chunk->size - chunkOffset, size)};
// A continuous region in the GPU address space may be made up of several discontinuous regions in physical memory so we have to iterate over all chunks
while (size) {
std::memcpy(destination + (initialSize - size), source, sourceSize);
size -= sourceSize;
if (size) {
if (++chunk == chunks.end() || chunk->state != ChunkState::Mapped)
throw exception("Failed to read region in GPU address space: Address: 0x{:X}, Size: 0x{:X}", virtAddr, size);
source = chunk->cpuPtr;
sourceSize = std::min(chunk->size, size);
}
}
}
void MemoryManager::Write(u8 *source, u64 virtAddr, u64 size) {
std::shared_lock lock(vmmMutex);
auto chunk{std::upper_bound(chunks.begin(), chunks.end(), virtAddr, [](const u64 address, const ChunkDescriptor &chunk) -> bool {
return address < chunk.virtAddr;
})};
if (chunk == chunks.end() || chunk->state != ChunkState::Mapped)
throw exception("Failed to write region in GPU address space: Address: 0x{:X}, Size: 0x{:X}", virtAddr, size);
chunk--;
u64 initialSize{size};
u64 chunkOffset{virtAddr - chunk->virtAddr};
u8 *destination{chunk->cpuPtr + chunkOffset};
u64 destinationSize{std::min(chunk->size - chunkOffset, size)};
// A continuous region in the GPU address space may be made up of several discontinuous regions in physical memory so we have to iterate over all chunks
while (size) {
std::memcpy(destination, source + (initialSize - size), destinationSize);
size -= destinationSize;
if (size) {
if (++chunk == chunks.end() || chunk->state != ChunkState::Mapped)
throw exception("Failed to write region in GPU address space: Address: 0x{:X}, Size: 0x{:X}", virtAddr, size);
destination = chunk->cpuPtr;
destinationSize = std::min(chunk->size, size);
}
}
}
}